If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4=x^2+4x
We move all terms to the left:
4-(x^2+4x)=0
We get rid of parentheses
-x^2-4x+4=0
We add all the numbers together, and all the variables
-1x^2-4x+4=0
a = -1; b = -4; c = +4;
Δ = b2-4ac
Δ = -42-4·(-1)·4
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{2}}{2*-1}=\frac{4-4\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{2}}{2*-1}=\frac{4+4\sqrt{2}}{-2} $
| -6(8-x)=0 | | m/7=49 | | -2(x+9)=-3(x+8) | | 10(f+2)=100 | | 1-2m=35 | | 9(j+3)=63 | | x/1=-20+4x= | | x+6=-6x+34 | | j+10/6=5 | | 17+7w=59 | | 48+26=y | | -3+5x=-3x+93 | | j+10=5 | | 2(-2x-1)=-5x+9 | | -x+8=2x-25 | | 7-3x=2(15-x) | | t-22=47 | | 2/5+15=x-6 | | 5(b+2)=70 | | 7x+5=x+59 | | y-84/3=4 | | 3(3x-5)=16x-7 | | 5x-5=9+3 | | t-85/3=4 | | s-$15=$15.96 | | 1762+y=6 | | 6(y-96)=6 | | 2r-26=40 | | 8+2x+4x=44 | | h+8.9=-8.9 | | 2f-44=26 | | 32(3x-6)=40(x+6) |